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Abstract: While the grazing of livestock has occurred for millennia in the Andes, current sustainability
debates center on concerns with co-managing climate change and pastoralism. These discussions
have special resonance in places protected by the state for biodiversity, scenery, and sustainable
and traditional land uses, such as those found in protected areas and biosphere reserves. For this
article, we integrate data from a social-ecological research project on the land use systems that affect
high-elevation ecosystems in Peru’s Huascarán National Park, with special emphasis on the wetlands.
We used land cover and land use data and insights from interactions with pastoralists to show that
(1) wet meadows dominate the lower reaches of the park, while peatlands predominate above 4000 m
elevation; (2) wet meadows are most useful for traditional grazing systems, while the peatlands
are especially susceptible to trampling by livestock; and (3) there is limited ecological space at the
highest elevations for the successful future upward relocation of either land use or potential habitats
for species identified as of concern. We explore the implications of these findings for the adaptive
strategies of biophysical and social processes in terms of livelihoods and biodiversity in and around
a protected area. We conclude that there are many additional opportunities to be explored to inform
the management of ecosystem services and provide improvements for the adaptive capacity of
communities and park managers.
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1. Introduction

Natural protected areas provide critical ecosystem functions and services in an increas-
ingly anthropogenic world. Protected areas were initially conceived as places to conserve
iconic landscapes and wildlife; however, they currently serve to achieve a wide variety of
conservation and socioeconomic purposes [1]. Protected areas are crucial for conserving
biological systems that will otherwise be depleted or degraded; however, historically, pro-
tected areas have aroused criticism for following international guidelines that overlook
local communities’ interests, negatively impacting peoples’ rights and livelihoods [2].

Climate change impacts ecosystems worldwide by altering mean temperature and
precipitation conditions and climate variability. As such, it has special resonance for pro-
tected areas. Temperature extremes in northwestern South America are projected to become
warmer and more frequent, with reduced and more variable precipitation associated with
changes to the El Niño–Southern Oscillation [3,4]. Climate change also exerts additional
pressure on ecosystems that are already facing degradation, fragmentation, and biodiversity
loss [5]. Wetlands are highly threatened and biodiversity-rich ecosystems that need special
attention regarding protected areas [6]. Overall, climate change represents a challenge
and threat for protected areas that require conservation managers to adapt strategies for
biodiversity conservation [7].

The high-elevation mountain regions in Peru contain several protected areas that
are known for the presence of tropical glaciers, endemic species, migratory bird feeding
grounds, and high diversity for certain taxonomic groups [8]. Here, we focus on Huascarán
National Park (HNP), which includes much of the Cordillera Blanca, a mountain range
known for containing many of the highest peaks in the tropics, and it is capped with
numerous glaciers, vast high-elevation wetlands, and glacial lakes, all of which are affected
by recent climate change [9]. The buffer zone of the park includes towns, settlements, and
agriculture. Some local people living in the buffer zone have access rights for grazing inside
HNP due to arrangements made as part of the park’s establishment in the 1970s.

Wetlands offer a multitude of ecosystem functions and values, including enhanced
water quality and storage, nutrient transformation and storage, habitat, grazing areas, and
carbon storage [10]. Due to concerns about climate change, the conservation, restoration,
and sustainable management of wetlands are receiving considerable attention. Wetlands
contain a significant proportion of the Earth’s total soil carbon, which can be released into
the atmosphere if these areas are degraded or drained [11]. Peatlands, which are defined as
wetlands with more than 40 cm of organic soil, globally hold the largest soil carbon stocks
of any ecosystem type [12]. According to current estimates, peatlands store approximately
one-third of the world’s soil carbon in just 4% of the land area [13]. While other types
of wetlands also store significant amounts of carbon, peatlands exceed them in terms of
carbon storage [14,15].

Most wetlands are situated in low-lying areas worldwide, although they are also
plentiful in numerous mountainous regions thanks to abundant groundwater, high precipi-
tation resulting from orographic uplift, and cool temperatures [16]. Wetlands are abundant
in the tropical Andes [17–20]. For instance, wetlands accounted for 18% of the mapped
area in the Ecuadorian Andes [21], and 11% of the area in Huascarán National Park, Peru,
was classified as wetlands [22]. Wet meadows and peatlands are the primary types of
wetlands found in the park, and they can exist independently or together, forming wet-
land complexes [23]. Wet meadows are mineral soil wetlands with seasonally saturated
soils [24,25], and they are typically dominated by herbaceous plants [16]. In the Andes,
it can be challenging to visually distinguish peatlands from wet meadows. This is due
to the similarity of the plant communities that grow on both types, which can either be
cushion- or graminoid-dominated, and the fact that they can exist together in large com-
plexes [22]. Mappings revealed that around 50% of the wetlands in Huascarán National
Park, Peru, consist of wet meadows, with the other half being peatlands [22]. Nevertheless,
a significant difference exists in the carbon stocks between the two types, with peatlands
having an average amount of 1092 MgC ha−1, whereas wet meadows store only an average
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amount of 30 MgC ha−1 [23]. Overall, wetlands in Huascarán National Park have a total of
24.4 teragrams of carbon, with peatlands containing 97% of the wetland carbon and wet
meadows containing 3% of the wetland carbon [23].

In addition to storing vast amounts of carbon, wetlands in the Andes are critical
pasture areas for local communities. In our collaborative research, we have emphasized
the evaluations of wetlands as centers of grazing activity, especially in the context of
protected alpine areas. We previously discussed the implications for conservation [26],
and here, we evaluate the implications from a social-ecological perspective by including
land uses in our observations and syntheses. High Andean wetlands can be conceptualized
as social-environmental systems because their characteristics are only partially regulated
by the biophysical processes of water and nutrient cycles, e.g., [27–29], and the dynamics
of ecological succession, e.g., [30]. Rapid changes in weather patterns and glacier retreat
further drive ecological shifts and hence complicate social-environmental responses [31,32].
Peru’s Andean rangelands provide 46.5% and 23.8%, respectively, of the national demand
for meat and milk [33]. Melting glaciers have transformed landscapes via lake outburst
floods and modifications of climbing and trekking routes, and lower-elevation plant species
have moved upward [34]. These problems are worsened by growing demands for natural
resources that are associated with economic growth [35].

The natural resources of the Andes, including glaciers and the associated high-
elevation landscapes, are relied upon by Andean agropastoralists [36], a type of land
use that embodies a form of social organization based on the growing of crops and the
raising of livestock as the primary economic activity. People have grazed native alpacas and
llamas in the Andes for millennia, although livestock used today also includes cattle, horses,
and sheep. Andean wetlands have long been recognized as having special importance for
grazing systems, e.g., [37–39], as well as for rare and endemic high-elevation species such
as the Andean bumblebee (Bombus rubicundus) and the giant hummingbird (Patagona gigas).
Therefore, protecting such areas in Peru, as elsewhere, comprises an uneasy management
mixture that tries to balance economic development and agropastoralist uses while also
considering the need to protect high-elevation biodiversity and ecosystem services. For in-
stance, many Andean wetlands have been managed since pre-Hispanic times via water
management technology [40–42]. They often serve as sources of livestock forage during
the dry season. In fact, Palacios [43] states that the size of the herd is set in relation to the
amount of wetland available in drier parts of the Andes. Briske [44] edited a book titled
Rangeland Systems, and the book helps delimit the biophysical and socioeconomic drivers
of change that are likely to be important in affecting grazing systems, such as those that
affect wetlands in the tropical Andes.

For this article, we integrate data concerning human cultural systems and high-
elevation ecosystems in and near Huascarán National Park (Figure 1) to characterize the
interactions of biophysical processes with human social dynamics. We built upon previous
wetland ecology studies to merge those data with new information on the grazing systems
that affect the national park. Our methods here are transdisciplinary, using syntheses of bio-
diversity and land cover information in relation to qualitative social research on perceptions
and responses of the stakeholders involved. Specifically, we explore the implications of
adaptive livelihood and biodiversity strategies in this protected area by evaluating the land
uses associated with people who live in the park’s buffer zone and providing insights into
likely future trajectories. Specifically, we ask the following: (1) What are the governance
practices associated with livestock grazing systems and how do those rules and practices
relate to the zonation of the national park? (2) What are the implications for park integrity,
biodiversity, and management, especially given the ongoing climate change?
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2. Study Area

Huascarán National Park (HNP), created in 1975, was declared a UNESCO Biosphere
Reserve in 1977, and it was listed as a World Heritage Site in 1985. The park (340,000 ha)
is surrounded by 43 agropastoralist communities that existed before the park’s creation,
with people who trace their occupation of high-elevation rangeland back several millennia.
Some communities continue to have access rights to resources under specific agreements
and arrangements with the park, although the communities themselves are situated outside
park boundaries. The most common land use utilized is livestock grazing, with cattle and
sheep being the most numerous livestock and there being limited numbers of horses and
donkeys. There are also some small-scale efforts to raise llamas and alpacas as an alternative,
but this is limited to a few communities.

The nucleus of the park is divided into five land use categories (Figure 1). Most of the
park is zoned as a Special Use Zone (49% of the total park area, or 166,600 ha) occurring
in the lower elevations (~<5000 m) in areas with agropastoral use prior to the establish-
ment of HNP; this designates where agropastoral activities are currently permitted in the
park. Most of the remainder is a Wild Zone (45.5% of the total park area, or 154,700 ha),
which comprises steep mountainous terrain (~>5000 m) with less human intervention,
mainly consisting of the occasional presence of hikers. Three other zones are much less
common and include the Strict Protection Zone for high-priority conservation areas that are
supposed to have very limited human activities and that protect the Polylepis woodlands;
a Tourism Zone; and a Recuperation Zone where degraded land is recovering.
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Livestock grazing within the park is divided into 64 sectors (each a different quebrada)
managed by their own usage committee (Comite de Usuarios de Pastos, CUP), which may be
family units, members of neighboring campesino communities, or members of neighboring
settlements, depending on the sector. This system came into practice in 1980 (under Res-
olución Ministerial № 01200-80-AA-DGFF), and with it a set of agreements between the
park and livestock grazers. The park has established a general system of rules to prevent
overgrazing, pasture degradation, burning, hunting, etc., but personnel typically do not
enforce grazing rules specific to each valley. No permanent housing for people is located
inside the park.

3. Methods

Our social-ecological research consisted of both biophysical and social research,
plus syntheses using the entire research group to make consensus representations of the
likely interactions and feedback. The synthesis research reported here was premised on
wetland research that was previously developed using a combination of multi-date, multi-
sensor radar and optical imagery [45,46]. For Huascarán, we used a fusion of PALSAR
(L-band ~23 cm wavelength), Radarsat, or other C-band data (e.g., Sentinel-1a, ERS-2;
~5.7 cm wavelength); Landsat or Sentinel-2 (optical, IR, and thermal); and SRTM DEM
derivatives for the areas delineated by the park’s boundaries. Wetlands are challenging to
map with optical data alone, but seasonal SAR imagery permits discrimination based on
differences in hydrology throughout the seasons. Topographic effects on SAR backscatter
were alleviated via careful radiometric terrain correction (RTC) [46] with a suitable DEM.
The Alaska satellite facility (ASF) software tool MapReady or AWS web tool OpenSARLab
was used for the correction of C-band data. L-band data from PALSAR are available from
ASF as already radiometrically terrain-corrected products. Our remote sensing work found
that in HNP, grasslands comprise 17%, woodlands comprise 8%, and wetlands comprise
11% of the park area, with the remaining area consisting of rock and ice. We also found
that wetlands increase in abundance with elevation, with wetlands occupying an area of
just a few percent in lower park elevations and up to 50% at high elevations (see [23] for
details). A simplified version of the wetland mapping is shown in Figure 1.

In conjunction with the fieldwork for wetland mapping, rapid biodiversity assess-
ments were conducted using focal habitat and transect sampling along wetlands in both
valleys, where aquatic invertebrates, terrestrial insects, and birds were sampled using
a combination of aquatic sample collections and visual surveys (Figure 2). Lakes were
appraised using pre-established transect points (Bowser and Ñaupari data collection sites)
for invertebrate collections and amphibian and fish observations (Bowser, personal commu-
nication). Point counts of bird populations were conducted and documented in eBird and
iNaturalist citizen science databases. These data were used to help inform our evaluations
of likely species shifts and the appearance of species that are new to science, but the specific
details will be published elsewhere.

Our newly reported empirical observations of land use for this article centered on
two valleys in HNP—Rio Negro in the southern end of the park and Ulta Valley in the
north–central section (Figure 1). Both valleys are on the western slope of the Cordillera
Blanca range. Work in Rio Negro was focused on a high elevation grazing area within HNP
in the Arhuaycancha sector, covering an area of 3802 ha from 3900 to 5000 m elevation.
The most recent park-sponsored livestock census from 2017 reported 91 total registered
users owning 369 cows and 2259 sheep. Management is performed generally by family
units. During the dry season, livestock graze in high-elevation wet meadows, while in
the wet season, animals graze in areas outside the park. The Ulta Valley covers an area of
4047 ha from ~3500 to 5100 m elevation. Grazing within the valley is primarily performed
by families from the Centro Poblado of Huaypán who typically walk ~2 h to reach their
livestock. The park census from 2018 reported approximately 154 pastoralists managing
472 cattle. We observed signs of degradation within this valley, which may be due in part
to the effects of overgrazing.



Land 2023, 12, 2051 6 of 15Land 2023, 12, x FOR PEER REVIEW  6  of  16 
 

 

Figure 2. A butterfly observed during sampling for invertebrates in HNP, Peru. Photograph by G. 

Bowser. 

Our newly reported empirical observations of  land use for this article centered on 

two valleys in HNP—Rio Negro in the southern end of the park and Ulta Valley in the 

north–central section (Figure 1). Both valleys are on the western slope of the Cordillera 

Blanca range. Work  in Rio Negro was focused on a high elevation grazing area within 

HNP in the Arhuaycancha sector, covering an area of 3802 ha from 3900 to 5000 m eleva-

tion. The most recent park-sponsored livestock census from 2017 reported 91 total regis-

tered users owning 369 cows and 2259 sheep. Management  is performed generally by 

family units. During the dry season, livestock graze in high-elevation wet meadows, while 

in the wet season, animals graze in areas outside the park. The Ulta Valley covers an area 

of 4047 ha  from ~3500  to 5100 m elevation. Grazing within  the valley  is primarily per-

formed by families from the Centro Poblado of Huaypán who typically walk ~2 h to reach 

their livestock. The park census from 2018 reported approximately 154 pastoralists man-

aging 472 cattle. We observed signs of degradation within this valley, which may be due 

in part to the effects of overgrazing.   

We used information from the park to examine data on stocking levels and agree-

ments with the local communities that bring livestock into the park. We then used house-

hold case studies to understand the land use and tenure dynamics. We asked participants 

in the study valleys to draw land tenure maps that indicate their boundaries. At the same 

time, households and community leaders were asked to draw maps showing all the graz-

ing spots they use, including their travel routes (daily and seasonal), and indicate all ac-

cess arrangements  (renting, borrowing, etc.). Participant observations were carried out 

with agropastoralists accompanying their herds and flocks; coauthor Eyner Alata carried 

out many of  the observations and was able  to conduct  interviews  in both Spanish and 

Quechua, as appropriate. Interviews were carried out between June–July and December 

Figure 2. A butterfly observed during sampling for invertebrates in HNP, Peru. Photograph by
G. Bowser.

We used information from the park to examine data on stocking levels and agreements
with the local communities that bring livestock into the park. We then used household
case studies to understand the land use and tenure dynamics. We asked participants in the
study valleys to draw land tenure maps that indicate their boundaries. At the same time,
households and community leaders were asked to draw maps showing all the grazing
spots they use, including their travel routes (daily and seasonal), and indicate all access
arrangements (renting, borrowing, etc.). Participant observations were carried out with
agropastoralists accompanying their herds and flocks; coauthor Eyner Alata carried out
many of the observations and was able to conduct interviews in both Spanish and Quechua,
as appropriate. Interviews were carried out between June–July and December 2017 and
between March and June–July 2018, with 17 families in the Rio Negro Valley, specifically
members from the Comunidad Campesina Cordillera Blanca near the population center of
Canray Chico who graze cattle in Arhuaycancha, and 13 families from Huaypán, 4 of
which had cattle in Ulta Valley. We also reviewed the Master Plan of HNP and the social-
environmental goals according to management criteria and zonation. Conversations and
interviews with four park personnel helped us compare park goals with agropastoralists’
social-environmental goals.

The nucleus of the protected area is within the park boundaries, the buffer is the area
adjacent to the park boundaries that have limited park management, and the transition zone
is outside the buffer with no park management. The nucleus zone of the park is separated
into four geographic sectors, including the Llanganuco and Carpa sectors on the western
slope and the Ichic Potrero and Potaca sectors on the eastern slope. The Ulta Valley is in the
Llanganuco sector, and the Rio Negro Valley is in the Carpa sector. We have some experience
in the Ichic Potrero sector in the Tambillos Valley for a peatland restoration project [47].
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Additional experiences suggest that there are likely other management approaches in other
parts of the park and its buffer area; although the two study valleys are distinct enough for
us to consider them grazing system archetypes, they may not represent all the diversity of
management regimes that affect HNP.

4. Results

Our overall takeaway message from this study is that rapid climate change will di-
rectly impact the environmental system, with concomitant changes to the social system
causing further detrimental feedback relative to the environmental system. We predict
that agropastoralism as a land use type will respond to climate change via altered grazing
management practices, e.g., [48]. The challenge will be to carry out agropastoralism in
ways that do not lead to land degradation, while also considering ecosystem functions
and the needs of endemic and high elevation species that require protected areas to sur-
vive. Our approach here is to take a social-ecological perspective, one that requires the
synthesis of wetland ecology and park management studies, with new data on the land use
systems involved.

HNP has the highest peaks in Peru and the largest area of tropical glaciers in the world.
The cryosphere supplies water to drainages on both the Amazon and Pacific Ocean sides
of the country. Climate change has caused some of the glaciers to completely disappear,
while some glaciers will still be here in a century, leaving the downslope valleys in varying
hydrological regimes of some, none, and recently lost hydrological connectivity to glaciers.
We used these environmental gradients to guide our sampling of moist to seasonally
dry climates, over 4000 m of topographic relief, and a shift from strict park protection to
essentially open access. We illustrate these interactions in Figure 3, which is our summary
interpretation of how biophysical gradients interact with the human dimensions of livestock
grazing in HNP.
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Our wetland mapping (Figure 1) illustrates that the agropastoral Special Use Zone of
the park already extends to most of the available land area for grazing. Our biodiversity
sampling showed that the Wild Zone provides limited potential as future refugia for many
native species, especially endemic birds such as the Andean Coot (Fulica gigantea), due to
its low accessibility and high coverage of bare habitat: According to the park, over 94% of
the Wild Zone are rock and cliff faces, unvegetated moraine areas, and glaciers. Species
unknown to science were discovered in these areas, with two new harvestman spiders
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(Acrograhinotus spp., D. Proud, personal communication); we expect that further identifica-
tion will continue to reveal new taxonomic and distributional information. The ability of a
species to shift its range in response to change or disturbance depends on its physiological
constraints and tolerances, dispersal potential, and the degree of connectivity between
habitat patches within the landscape. Previous research has found that mammalian wildlife
in HNP avoids areas occupied by cattle and people, including high-priority habitat areas in
the Strict Protection Zone (J. Gilbert, personal communication). Due to active avoidance,
these species are likely to be most abundant in higher elevations of their range but have
limited dispersal potential beyond park boundaries.

Regarding the grazing systems utilized, land use data suggest that the park–people
interactions in our study area involve two general archetypes of land use: a seasonal
rotational livestock system that actively brings in cattle to the wetlands and sheep to the
hillslopes of the park during the dry season (see Figure 4 for an example) and a more
passive management system that keeps cattle in the park year-round (see Figure 5 for
examples). The former appears to be less environmentally damaging (and reportedly more
productive economically), but the latter is still common because cattle owners who remove
their livestock risk losing access rights in the future. For example, in Ulta Valley’s free-
range system, wetlands are grazed throughout the year with no chance for recovery or
regeneration; labor demand is minimal, as the animals are not actively managed or watched
over. Rio Negro Valley has a seasonal rotational grazing system, where wetlands have the
chance to recover/regenerate for the next grazing season; labor is permanent and requires
following livestock throughout both daily and seasonal shifts. Wetlands inside the park are
mostly used by cattle only during the dry season, giving them a chance to recover during
the rainy season. For this reason, the seasonal rotational system is less environmentally
damaging. In contrast, the free-range system requires less investment of time and effort
by agropastoralists.

Thus, based on interviews and other interactions with the managers and grazers of
HNP, we conclude that two distinct livestock–rangeland management types exist across
the different sectors and zones of the park. In addition, at higher elevations, livestock–
rangeland management types may tend to change into styles that are frequently less
managed with more free-range management due both to labor opportunity costs and risks
due to extreme weather conditions.
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In addition to grazing practices, the access rights and tenure issues of agropastoralists
as reported to us are also causing sustainability concerns because recent market shifts
have impeded rangeland management, changed familial land divisions, and led to altered
agropastoral management capacity. For example, a trend reported by our informants is
that livestock owners may hire laborers to move and check on animals, or one family
member may care for livestock belonging to extended family members. Pasture avail-
ability to those who are not members is limited to areas outside the park’s boundaries
(J. Gilbert, personal communication). We observed that the respective households, commu-
nities, and park management personnel all have different and at times opposing goals for
livestock management.

Typical habitats and pasture use in the park are shown in Figure 5. Based on our
observations, we note that conflicts and disputes involving the grazing systems affecting the
park will tend to increase if park managers have incorrect interpretations of agropastoralist
goals, making relationships with the nearby communities difficult: use of rangelands
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inside the park provide diversification options for agropastoralists, e.g., [48,49]. To better
inform park and rangeland management, researchers and conservationists need further
information on how the social-environmental system functions in HNP, giving insights that
could be used to assess how climate change adaptation at the park and community levels
will interact with environmental benefits.

Mountain peatlands are found predominantly in the highest parts of the park and
are very susceptible to grazing impacts due to their thick and soft organic soils, which are
easily trampled [50,51] (see Figure 5 for examples). Trampling can significantly reduce or
reverse carbon storage and increase the emissions of the potent greenhouse gas methane by
an order of magnitude [52]. These peatlands are also viewed as hazardous by some local
people because livestock can perish in the soft peats; nevertheless, they are a global biodi-
versity concern given their unique habitat for specialized native species. Although they
cover a relatively small area in HNP, the high-elevation wetlands and Polylepis-dominated
woodlands provide essential habitats to over 780 species, many of which are considered
threatened or near threatened by the IUCN Red List of Threatened Species [53–56]. Risks to
peatlands associated with drier conditions under a changing climate further complicate
management. Long-saturated organic biomass in low temperatures decomposes slowly
through anaerobic pathways, which has allowed carbon to build to extraordinary lev-
els [23]. Reduced inflow from glacial melt and less rainfall will promote drier conditions
and aerobic decomposition, initially reducing emissions compared to baseline emissions
but then speeding the emissions of greenhouse gases upon periodic rewetting [57].

Based on participant observations and conversations, we found that grazing may
not be equally distributed across the landscape of HNP, with much of the uplands being
covered by tussock grasses (locally called ichu; Calamagrostis, Festuca, Stipa species) and
shrubs that are less palatable to cattle and sheep, especially if the vegetation is not burned,
which is an activity forbidden inside the park. Because wetlands are wet for most of the
year and covered by lush, palatable plant growth, we expect that most of the grazing will
occur in wetlands. Low-elevation wetlands in and near HNP are mostly wet meadows,
while high-elevation wetlands are peatlands that have much greater carbon storage and
softer substrates.

With an increase in elevation, livestock–rangeland management types may result in
less carefully managed and more free-range animals at higher elevations due to longer
travel distances to monitor livestock, increased labor demands, and a lack of alternative
pastures in lower elevation areas.

Our biodiversity observations also suggest that in the future, there might be shifts
in distributions as invasive species and lower-elevation species move into the ecological
spaces currently used by cold-adapted species, such as the Andean bumblebee, while
agropastoralism and development in lower elevations may encourage some lower elevation
species to shift upwards into higher elevation refugia [58,59]. Montane specialist species
(for example, some birds, particularly Polylepis habitat specialists), cold-adapted species
(e.g., reptiles, amphibians, insects), and dispersal-limited species are at higher risk of
mountaintop extinctions with respect to future changes.

5. Discussion

Climate change in HNP will likely continue to alter agropastoralist grazing practices.
Unpredictable water supplies and scarcity due to changing seasonal patterns (longer dry
season and shorter rainy season) may directly affect rangeland production. Some valleys
have large head valley glaciers, while others are now “postglacial” in the sense that the
cirques are ice-free. In response, people told us that they have been modifying their use
of rangelands and stocking rates (see also [60,61]). More grazing is also likely to occur at
higher elevations if warmer conditions prevail, although we also note that our observations
suggest that social factors may act to limit how far up valley pastoralists may be willing to
shift their flocks and herds. Furthermore, our cartographic assessments show that there is
limited ability to move grazing upwards as wetlands are only found below 5000 m due
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to rocky substrates, and these wetlands transform into peatlands that are more sensitive
to grazing (and less desirable) compared to lower elevation (3000–4000 m) wet meadows.
We conclude that the park’s wetlands will be much more susceptible to grazing impacts
with an increase in elevation, including large changes in biodiversity, soil carbon, and
impacts on greenhouse gasses (CO2 and CH4) [28,29,47,52], and these changes will magnify
as grazing intensity increases.

Based on these observations, we hypothesize that areas that are currently most de-
graded are a result of a combination of social access and tenure issues, with grazing
management type overlapping with ecosystem type (e.g., wet meadows and peatlands).
In other words, we expect that wet meadows, and especially peatlands within areas of
intense use and conflict, will be the hotspots of degradation, with cascading impacts on
biodiversity; there is also a special concern for the rare and endemic species found in high
elevations. We lastly conjecture that climate change adaptation will have to be well planned
if biodiversity and important ecosystem functions are to be maintained in HNP and similar
protected areas as there are limited areas for upward shifts.

In our study area, the residents of Huaraz, the main city on the western side of
HNP’s buffer zone, recognize the ecological and economic value of wetlands and have
indicated a willingness to pay for the benefits they provide to society [62]. Important future
research topics would include land tenure, economic policies, labor constraints, and re-
duced livelihood opportunities, all of which are challenges to Andean agropastoralists [63].
As a result, social-ecological feedback and interactions explain landscape dynamism but
must be examined via transdisciplinary approaches.

The next steps in research could include simulation models combined with empirical
measures, community knowledge, and other data determined via literature searches and
sampling to address integrated and jointly developed questions. For example, in HNP,
we have used citizen science datasets for biodiversity and the documentation of taxo-
nomic groups tagged with wetland datapoints and geo-referenced them together. These
included sample points for aquatic invertebrates and sweep surveys for terrestrial inver-
tebrates [64,65]; and non-destructive techniques, such as camera traps and iNaturalist.
We have collected some community knowledge expressed through stories, interviews,
and on-the-ground mapping, coupled with tools to measure ecological change that can
build on the traditional knowledge of the community [66]. Ecological oral histories record
knowledge of dynamic landscapes based on observations and interpretations of social-
environmental systems [67,68]. Finally, we are in the process of building on experiences in
constructing local scenarios for other agropastoral communities [69] to develop and adapt
simulation models [70,71]. As technology improves, communities can use data and science
to increase awareness and change perceptions, e.g., [72]. This local connection is a key
aspect of the dissemination and outreach concerning climate scenarios and for creating
decision support tools for the local community and for the protected area itself.

Broadening the focus from our specific study sites leads us to generalize that the
tropical Andes are in ecological flux due to rapid land cover changes, which are caused
by both biophysical and socioeconomic drivers. These landscapes are shaped in part by
the legacies of past human land use with respect to ancient pastoralism and farming [73]
and by millions of downstream users who are dependent upon glacier-fed streams for
water and energy production [74]. Grazing has occurred for millennia in the Andes, but
traditional systems in Peru underwent drastic changes due to the colonial introduction
of cattle, sheep, and other livestock; and changes in land tenure arrangements, including
the establishment of large haciendas during the colonial period and Agrarian Reform
expropriation and redistribution in the late 1960s, followed by the creation of protected
areas in the 1970s [75,76].

Beyond applications to the park–people system documented here, the findings are
also relevant to the design, management, and governance of grazing systems elsewhere in
the world. Our study touched on many of the topics covered in Briske’s [44] edited vol-
ume on rangeland systems, which include ecological shifts, ecohydrology, nonequilibrium
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conditions, and the challenges and opportunities of taking a social-ecological approach
to adaptive management. Globally, there are frequently differences in ecosystem impacts
found in either permanent or rotational grazing regimes, depending on factors such as
climate, soil characteristics, and vegetation composition. As an example, shorter bouts of
grazing can be an effective strategy in semi-arid rangelands [77], and some forage species
are more resilient to continuous grazing, while others benefit from rotational rest peri-
ods [78]. Rotational grazing can be associated with greater soil organic carbon, giving some
climate change mitigation opportunities [79]. Rotational grazing at moderate intensity can
help maintain or improve plant cover, productivity, and biodiversity; enhance soil struc-
ture and fertility; and increase carbon and nitrogen storage [80]. Implementing mutually
beneficial land management strategies for conservation and livelihood sustenance, such as
rotational grazing, is advisable to keep higher levels of biodiversity and the functionality
of ecosystems, increase the productivity of grazing lands [80,81], and reduce disinvestment
in pastoralism [81]. Moreover, the implementation of rangeland management practices
should consider the effects of traditional pastoral practices before banning grazing, mainly
in landscapes with a long history of coadaptation with ruminant animals [82]. These ob-
servations call attention to the need for monitoring the effects of grazing practices and
adjusting them to meet specific goals and minimize negative impacts.
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